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In steady, two-dimensional, inertia-dominated flows it is well known that the 
vorticity is constant along the streamlines, which, in a bounded domain, are 
necessarily closed. For inviscid flows, the variation of vorticity across the streamlines 
is arbitrary, while for forced, weakly dissipitative flows, it is determined by the 
balance between viscous diffusion and the forcing. This paper discusses the linear 
stability of flows of this type to two-dimensional disturbances. Arnol’d’s stability 
theorems are discussed. An alternative functional to Arnol’d’s is found, which gives 
the same stability criteria and which permits a representation of the problem in 
terms of a Schrodinger equation. Conditions for stability are derived from this 
functional. In  particular it is shown that total flow reversals are potentially unstable. 
The results are illustrated with respect to the geometrically simple case when the 
streamlines are circular and the forcing is due to a rotating magnetic field, for which 
case the stability regions are calculated as a function of two parameters. It is shown 
that the entire theory, including Arnol’d’s theorems, applies also to poloidal 
axisymmetric flows. 

1. Introduction 
We consider steady, laminar, two-dimensional flow of an incompressible 

Newtonian fluid in a compact, simply connected domain V bounded by a surface S. 
The streamlines of such a flow are necessarily closed and may be described by 
a stream function $, so that in Cartesian coordinates the velocity is given by 
u = V A ( O , O ,  $), and the vorticity by o = ( O , O ,  w )  where 

w = - V 2 $  in V ;  $ = 0  on S.  (1.1) 

When viscous forces and rotational forcing can be neglected, the vorticity must be 
constant along streamlines 

w = w ( $ ) .  (1.2) 

In this paper, we shall mainly be concerned with unforced inviscid flows, for which 
the function w ( $ )  is arbitrary and determined by some initial condition. We shall 
assume that the flow (w ,  $) is given and address the question of its stability to small 
disturbances. We shall confine ourselves almost invariably to the discussion of two- 
dimensional perturbations, so that the vorticity remains in the z-direction. Such 
disturbances are of great importance in the geophysical context, where the effects of 
stratification and especially rotation constrain the flow to quasi-two-dimensionality 
(e.g. Blumen 1968; McIntyre & Shepherd 1987). These disturbances are also 
important in unconstrained two-dimensional flow, although often other disturbances 
dominate (for example, Taylor vortices in circular Couette flow). Occasionally it will 
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be possible to infer the behaviour of more general disturbances from the two- 
dimensional theory. 

The method we shall adopt is a global one, and is based upon the work of Arnol’d 
(1965, 1966). We derive a variational principle which, if satisfied, guarantees the 
stability of the flow to two-dimensional disturbances. As is usually the case with 
global approaches, failure to satisfy the stability criteria does not in itself imply 
instability. To obtain the genuine stability boundary one must usually resort to 
normal mode techniques. Such an approach is, however, hard enough even for the 
geometrically simple case when all the streamlines are circular, aB in the Taylor 
(1923) problem. For the general case, with arbitrarily shaped streamlines, this 
approach is impractical. Global criteria can however be found which, when satisfied, 
rigorously guarantee stability, and which, when not, provide a useful indication of 
the likelihood of the onset of instability. The lack of any alternative results 
whatsoever increases greatly the value of global results for many practical problems. 

Arnol’d’s stability theory relies upon various invariants of inviscid flows and 
cannot therefore be applied blindly to dissipative systems. However, in some 
circumstances, discussed in a companion paper (Mestel 1989), flows that are both 
forced and viscous may be described by (1.2) together with a relation expressing the 
balance of the forcing and viscous diffusion, namely 

where F is the (rotational) driving force per unit viscosity. The integrals in (1.3) are 
taken around the closed streamlines $ = constant. We shall find that dw/d$ is an 
important quantity in our stability calculations and shall therefore occasionally refer 
to (1.3) for physical interpretation of this derivative. To some extent, we may regard 
inviscid flows as being driven by some fictitious force against the weak viscous 
resistance. Nevertheless, the results of inviscid stability calculations can only be 
applied with great caution to such flows, even in the absence of boundary layers. 

In  the next section, we review the linear version of Arnol’d’s theory a8 used by 
Andrews (1983). In $3 we derive a variational principle involving a functional which, 
while not itself conserved by the flow, is easier to use than Arnol’d’s functional and 
which gives identical linear stability criteria. This variational principle corresponds 
to a Schrodinger eigenvalue equation. Using this form of the stability criterion, we 
derive in $4 various simple relations which may be used as stability tests for a general 
flow satisfying (1.2). In $ 5  we prove that a certain class of flow reversals are always 
potentially unstable. In  $6 we illustrate these results by considering the simple case 
when the surface S is circular. In  particular, we consider the flow in an 
electromagnetically stirred cylindrical column of liquid metal. The general results 
derived in this paper are compared with the precise stability conditions obtained 
from normal mode analysis of circular flows. Finally, in $7 we discuss the extension 
of these results to poloidal, axisymmetric flow configurations. It is shown that the 
entire two-dimensional theory carries over into axisymmetry with but minor 
modifications. We conclude in $ 8. 

2. Arnol’d’s stability theorems 
We consider a given two-dimensional region V with a basic steady flow described 

by w = w ( $ ) .  We shall also describe the flow by $ = $ ( w ) .  If w ( $ )  is not a monotonic 
function then some care will have to be taken to ensure that the correct values of w 
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FIGURE 1. A topologically simple streamline pattern. 

and @ are used in any expression. For reference, it  is useful to think of a topologically 
simple streamline pattern, such as in figure 1. For simplicity, we assume that V is 
simply connected, so that it is bounded by a connected surface S on which $ = 0. 
Nevertheless, most of our results will hold with but minor modification for domains 
V with a more complex topology (for example, regions with an inner as well as an 
outer boundary). A further generalization would be to include in the base flow a 
velocity component in the z-direction which is constant on any individual streamline, 
leading to helical rather than closed streamlines. Although such an extension would 
be straightforward, we shall consider here flows that are strictly two-dimensional. 

When the steady flow is perturbed by an unsteady but two-dimensional 
disturbance it may be represented by means of a stream function Y ( x ,  y , t )  

W x ,  y, t )  = $(x, Y) + qQx, Y, t ) ,  (2.1) 

where E is some small parameter, and $ vanishes on the boundary S so that Y does 
also. The behaviour of the flow is governed by the vorticity equation 

D 
Dt 
-(-VY) = o ,  

where D/Dt is the material derivative following the unsteady fluid motion. Arnol'd 
observed that for any such flow, the functional 

r 

A(Y) = J [i(Vflz-C(-VZ!P)]dV 
V 

is conserved by the flow for any function C, i.e. 

_ -  - 0. 
dA 
dt 

(2.3 1 

This follows from the individual conservation laws for kinetic energy and for any 
function of the vorticity. Now to lowest order in E ,  

A(  Y )  = A($)  + E  [V$ - V # + V z $ C (  -VZk)]dV. (2 .5)  s, 
Using the divergence theorem, we see that the functional A(Y)  will be stationary 
when Y = $ if the function C is chosen so that 

Then 

C(0)  = $ ( w ) .  

A ( Y )  = A(@)+pB($)+o(E2) ,  



22 A .  J .  Mestel 

where the functional B(q5) is given by 

Now A (  u) is conserved by the flow. It follows therefore that for all time B(q5) is equal 
to its initial value in the linear approximation. The magnitude of the perturbation q5 
can only increase if it  contrives to keep the value of B(q5) small. Thus, an unstable 
normal mode # = @(x,y)eTt, where Re(a)  > 0, must satisfy B(@) = 0. There are 
many dynamical constraints on the function 6, which must satisfy (2.2) to order e .  
From now on, however, we relax totally these constraints. Should the basic flow 
(w ,  $) and domain V be such that B(q5) is bounded away from zero for all functions 
#(x, y, t ) ,  then this will certainly also be the case for the smaller class of dynamically 
permissible q5. Whatever then the initial perturbation, it will be unable to grow in 
magnitude. This proves, in essence, Arnol’d’s stability theorems. The flow is stable 
if, for all non-trivia1 functions q5 vanishing on S, either 

or 

for some positive constant k and some suitable norm on q5, say 

(2.9) 

(2.10) 

(2.11) 

In fact Arnol’d proved a stronger result. Slight modification of the functional B, so 
as to avoid the use of a Taylor expansion, suffices to prove nonlinear stability of the 
flow, if either (2.9) or a stronger version of (2.10) holds. In  this paper we are only 
interested in the linear theory, and so formulate the results as above (cf. Andrews 
1983). 

Let us now consider the functional B(q5) and ask under what circumstances it can 
be of definite sign. Clearly, if 

< 0 throughout V (2.12) 
d o  

then (2.9) holds, and the flow is stable. This is Arnol’d’s first theorem. Now suppose 
that d$-/dw > 0 in some subregion, V-, of V .  It is intuitively obvious that B(q5) can 
be made negative by judicious choice of q5. For if 4 is made to vary on very short 
lengthscales within V- and on much larger ones outside V-, then the high derivatives 
in V- of the second term will dominate the integral in (2.8) which will therefore be 
negative. A similar argument shows that if d$/do < 0 in some region V+ then B(q5) 
can be made positive. If non-empty regions V- and V+ exist simultaneously then it 
will be possible by continuity to find functions $ for which B(q5) = 0. Such a q5 might, 
in principle, grow. Thus if (2.12) does not hold everywhere the only possibility for 
further application of Arnol’d’s theory is when 

2 0 throughout V.  
d o  

(2.13) 

When this occurs, the two terms in (2.8) are in competition. We have already 
observed that the term with the higher derivatives can be made the greater of the 
two. Thus, for some suitable norm on q5, the functional B(q5) has no lower bound. 
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However, a global maximum for B will exist. Arnol’d’s second theorem (2.10) will 
apply if this maximum is negative. 

Let us therefore seek this maximum by perturbing B($)  subject to the constraint 

(2.14) 

A similar process was considered by Moffatt (1986). This constraint is to some extent 
arbitrary and does not affect the final result (2.17). The stationary values of B occur 
when for some eigenvalue A 

Aq5+-V2$=0 dlk in V ;  $ = O  on S.  (2.15) 
dw 

For an eigenfunction satisfying (2.15), B takes the value 

B($) = (1  - A )  IV#12 d V.  1“ 
The Poincar6 inequality 

(2.16) 

(2.17) 

where A, is the least eigenvalue of (2.15), follows. Thus B is negative definite, and 
Arnol’d’s second theorem applies, provided A, > 1. 

Let us now consider a sequence of flows w ( $ ; a )  varying continuously with some 
parameter a. IfB is negative definite for some range of this parameter, then we know 
that the flow will be stable for this range. At some particular value a = a,, however, 
B may attain a maximum value of zero. The stability theorem will then no longer 
apply, and the flow becomes potentially unstable. At this changeover between flows 
that are definitely stable and those that may be unstable we know that there must 
exist an eigensolution to the problem 

(2.18) 

Although we cannot be certain whether or not this changeover indicates a genuine 
onset of instability, it is of interest to note that the linearized vorticity equation (2.2) 

. -  

may be written as 

at 
(2.19) 

Thus when (2.18) holds for some $, that $ is a normal mode for the problem with a 
zero growth rate. The breakdown of Arnol’d’s theory may therefore (but need not) 
correspond to a genuine onset of instability. 

3. An alternative stability functional 
Consider now the functional J($)  defined by 

This functional has no upper bound and is clearly positive definite when (2.12) holds. 
It attains its minimum subject to the constraint 

13.2) 
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when for some eigenvalue h 

1 dw 
-V2$+-$=0  in V ;  0 on S 
h d$ 

has a solution. For such an eigenfunction, 

(3.3) 

J is thus positive definite provided the lowest eigenvalue h of (3.3) is greater than 
unity. Comparison of (3.3) and (2.15) demonstrates that  the conditions for Arnol’d’s 
stability theorems to apply are identical to those for the functional J to be positive 
definite, provided dw/d@ is single signed. 

From a practical viewpoint this is a very useful result. The functional J is much 
easier to handle than is B. Furthermore, the variational principle for J being positive 
may be represented as a Schrodinger equation, as we shall see later. We may thus 
draw on the wealth of theory on this equation t o  derive some simple bounds on the 
stability regions. 

Unlike the Arnol’d invariant B, J is not necessarily conserved during fluid motion. 
Although it may also be expressed as the second variation of a functional that is 
stationary when Y = $, namely 

I ( Y )  = [i1Vf12-D(Y)]dP‘, (3.5) 

where D’($) = w(@L (3.6) 

s, 
it may (and will) vary in time as D( Y) varies. Nevertheless, as we have shown above, 
if B is single signed (and the flow is stable), then J must be positive and I ( $ )  is a local 
minimum. We may therefore regard I as an ‘energy-like’ functional. A steady flow 
is stable if it minimizes I locally. However, while i t  is true that any unstable normal 
mode of the system, @(x, y) cut, must satisfy B(@) = 0, it need not satisfy J ( @ )  = 0. 

In  the rest of this paper we shall use the positive definiteness of J as our criterion 
for stability. We have shown that when du/d@ is single signed and J($ )  > 0 for all 
$, then the flow must be stable. When conversely J ( $ )  < 0 for some $ then the flow 
is merely ‘potentially unstable’. We shall refer to this state as p-unstable to 
distinguish it from flows that are known to be unstable. It is generally the case with 
global approaches to stability that the precise onset of instability cannot be 
determined. In  our case the ambiguity arises because we are including in our 
calculations many perturbations q5 that are dynamically inaccessible. 

It is instructive to note that for one-dimensional flow u = (u(y), 0, 0), equation 
(2.12) reduces to Rayleigh’s inflection-point result 

d2u 
U - G O  

dY2 
(3.7) 

(or, after some modification, to Fjrartoft’s 1950 theorem : McIntyre & Shepherd 
1987). Correspondingly, for circular flow (2.12) implies 

d l d  
dr r dr  

u---(ru) 2 0, (3.8) 

where u = (0, u(r ) ,  0) in terms of cylindrical coordinates ( r ,  0 , ~ ) .  Thus, if u(r)  is single 



Stability of $ow with closed streamlines 25 

signed (u ( r )  2 0 without loss of generality) we obtain Rayleigh’s (1880) inflection- 
point result for circular flows, namely that a necessary condition for instability is 
that the vorticity gradient dwldr should change sign. Equation (2.12) may thus be 
considered as the generalization of Rayleigh’s criterion to a system with arbitrarily 
shaped streamlines satisfying (1.2). Interestingly, in the single-signed circular case, 
this criterion su5ces to prove stability against axisymmetric disturbances also. For 
if we divide (3.8) by u and integrate between 0 and r we obtain 

I d  
r dr 
--(ru) 221im 

‘I-0 
(3.9) 

as u 2 0. Thus Rayleigh’s circulation criterion also holds everywhere and stability to 
axisymmetric disturbances follows. We shall comment further on the circular case in 
$6. It is intriguing that a theory based solely on two-dimensional disturbances should 
have three-dimensional implications, and it is natural to enquire to what extent 
similar results hold for non-circular flows. Bayly (1988) has shown for two-dimensional 
flows with convex streamlines that a generalization of Rayleigh’s circulation 
criterion is a sufficient (but not necessary) condition for instability to three- 
dimensional disturbances. That is, the flow is unstable to disturbances analogous to 
Taylor vortices if the circulation round a streamline decreases outwards in some 
region. Now it is easy to show that outward-decreasing circulation occurs if and only 
if regions of both positive and negative vorticity exist within some streamline. 
Without loss of generality, let the vorticity be positive a t  the central stagnation 
point, 0. Analogously to the circular case, the flow may be deemed ‘single signed’ 
when the stream function, $, varies monotonically outwards, as in figure 1. Then 
following the argument leading to (3.9), we can integrate (2.12) from 0 to $ to show 
that the vorticity is always positive. Thus, the circulation always increases outwards 
for flows satisfying (2.12). However, as the circulation criterion is not necessary for 
instability for non-circular flows, we are unable to deduce three-dimensional stability 
in the general case. 

The form of the stability functional J suggests that increasing dw/di+ leads to an 
increased likelihood of instability. There are thus grounds for regarding regions of 
positive dw/d$ as encouraging instability, and it is natural to enquire what physical 
quantity this reflects. We have already commented on the connection with various 
inflection-point criteria for simple flows. In  the general case, we can gain some feel 
for the process by considering the forced and dissipative problem which is governed 
by (1.3). Positive dw/d$ occurs when the force F has a positive line integral around 
the streamline in the direction of the flow. Large dw/d$ corresponds to a high ratio 
between the total rate of vorticity generation within a streamline to the total 
vorticity contained within it. Thus when the circulation around a streamline is 
relatively weak one might expect that a perturbation would be capable of extracting 
energy from the forcing with resultant instability. 

The role played by dw/d$ in the stability criteria together with its connection with 
physical quantities might lead one to postulate that a stable flow cannot be rendered 
unstable by decreasing the vorticity gradient dw/d$. If such is the case (and we have 
provided no proof) then we may extend the validity of our stability criterion to 
include some flows for which dw/d$ passes through zero and yet for which J is always 
positive (although Arnol’d’s functional B is of indefinite sign). In what follows we 
shall not exclude such cases from the theory. It should be borne in mind that stability 
has not been proven unless w ( $ )  is monotonic. 

The variational formulation of the stability criterion is very useful for attempts to 
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demonstrate p-instability, as it permits the substitution of chosen trial functions q5. 
Equivalently, however, we may formulate the criterion as an eigenvalue problem. A 
function (p for which J(q5) < 0 exists if and only if the eigenvalue problem 

(3.10) V2q5+-(p=hq5 in V; q5=0 on S 

possesses a positive eigenvalue h = A, > 0. Equation (3.10) is a Schrodinger equation 
corresponding in elementary quantum mechanics to a particle of suitable mass 
restricted to V under a potential -dw/d+ with total energy - A .  Somewhat curiously, 
the criterion for stability is identical to that for the non-existence of a negative 
energy state for such a particle. I n  the next section we shall apply some of the 
established quantum mechanical techniques to our problem. 

d o  

d P  

4. Bounds on stability regions 
In  this section we consider the stability criterion in both its variational (3.1) and 

eigenvalue (3.10) forms and obtain conditions which guarantee (p-injstability of the 
flow. 

First, let us define the extreme values a and p attained by do/d$ in V: 

JU(q5) = [IVq512 -44 dV (4.2) 

(4.3) 

s, Then writing 

and similarly for JB we see 

Thus we may infer stability if J, > 0 for all q5, and p-instability if there exists a q5 such 
that Jp < 0. We now consider the equivalent eigenvalue problems appropriate to J, 
and Ja, 

J, < J < Ja. 

Let ki be the smallest eigenvalue of the Helmholtz equation 

V2q5+k2q5=0 in V; q5=0 on S. (4.4) 

It is clear that the flow will be stable if 

a < A$ 

and p-unstable if p > ki. 
Equation (4.5) is clearly an improvement on the estimate (2.13) and is related to 
Arnol’d’s second theorem (1966, see also McIntyre & Shepherd 1987). The eigenvalue 
kt can be bounded geometrically (Garabedian 1964, p. 409). Provided the domain V 
is star shaped (i.e. there exists an origin 0 about which S may be described in polar 
coordinates by r = f(0) where f is single valued) then 

where A‘ is the area of V and h is the distance from 0 onto the tangent to S. In (4.7) 
j,, is the first zero of the Bessel function J, (kt = jt1 when V is a circle of unit radius). 
Equation (4.7) may be used in conjunction with (4.5) and (4.6) if desired. 
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We remarked in $3 on the similarity between our problem and the two-dimensional 
Schrodinger equation. In  the remainder of this section we exploit that analogy, It is 
clear from the variational formulation that we may restrict the function $ at will 
provided we are seeking sufficient conditions for p-instability . In  particular, we may 
derive a one-dimensional Schrodinger equation which is more amenable to analysis. 
A natural restriction is to require q5 = q5($), so that the perturbation does not alter 
the shape of the streamlines to lowest order. With this restriction 

where dl denotes an integral round the closed streamline keeping @ constant, and 
q = lul. If we write 

then we obtain (4.10) 

noting that y is logarithmically infinite as $ tends to its maximum value a t  the 
central stagnation point. The existence of negative values of J ($ )  is equivalent to the 
existence of positive eigenvalues h for the equation 

where the potential 

(4.11) 

(4.12) 

We may now apply established methods from elementary quantum mechanics to 
(4.11). For instance, we may inscribe a 'square-well' potential Yo inside the actual 
potential V .  Suppose for simplicity that Y is a monotonic increasing function of y 
(and is therefore negative as Y + O  as y+ 00). Then we may define for some yo 

so that Y < Yo everywhere. The existence of a bound state ( A  Q 0) for Vo gives as 
a condition for p-instability 

max [ - yi Y ( y o ) ]  > $71:' (4.14) 
a /O>O 

when we consider all permissible yo. The above 'square-well' approximation will give 
a good bound when the potential V varies quickly with y. When on the other hand 
Y is slowly varying, a WKB approximation may be used. The condition for p- 
instability is then found to be 

(4.15) 

(Murzbacher 1970, chapter 7) .  Unlike the other conditions we have obtained, we 
cannot rigorously infer p-instability should (4.15) hold marginally, although the 
possible error of the approximation could be bounded. 

We have thus developed a number of conditions which are of use in determining 

2 FLM 200 
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FIQURE 2(a-c). For caption see facing page. 

the stability or otherwise of a flow (o,@).  We conclude this section with the 
observation tha t  when $ = @, (3.1) and (1.1) imply 

(4.16) 
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A 

FIGURE 2. Schematic behaviour of a flow driven by an anticlockwise force F and a varying surface 
stress T. (a) Unseparated flow for T < T ~ ;  ( b )  simultaneous separation, shown to be p-unstable, 
u = 0 on 4 ;  (c) local separation for T~ < T < T ~ ;  (d )  separated flow without stagnation streamline 
TI < 7 < 7,. 

Thus when $ 2  0 in V, the flow will be p-unstable whenever 

d w  w - > - throughout V. 
d@ $ 

(4.17) 

In  the next section we shall prove a general result concerning the p-instability of flow 
reversals. 

5. Instability of flow reversals 
Before we proceed with the statement and proof of the theorem, it is useful to 

consider the following thought experiment. Suppose we have a flow governed by (1.2) 
driven by an anticlockwise force F acting in V, and a clockwise tangential stress 7 
acting on S ,  as in figure 2. Global equilibrium is maintained by a suitable normal 
stress on S (provided S is non-circular). Such problems are solved in Mestel (1989). 
Physically, we would expect that  when IF[ % r/L,  where L is a typical lengthscale of 
V ,  a single anticlockwise gyre will form as in figure 2(a), while if r /L  % IF1 a single 
clockwise gyre will form. If we start from the former end, with r negative, and 
consider the solution as 7 increases towards and through zero, it  is clear that as the 
resistance of S grows, at some value 70 the velocity will fall to zero somewhere on S. 
For 7 > 70 a region of reversed flow will develop either as in figure 2 ( b ) ,  if separation 
occurs simultaneously everywhere on S, or as in figure 2 (c), if separation is localized. 
I n  the latter case, as 7 increases still further, the region of anticlockwise circulation 
will shrink, separate totally from S a t  some value 71 (figure 2d) ,  and contract to a 
point when 7 = 72. The form of the function w ( $ )  in the various cases is indicated on 
the figures. The behaviour shown in figures 2 ( c )  and 2 ( d )  is more general than that 
of figure 2 (b), but the latter is of importance in some special flows (including, but not 
only, circular flows). More complex behaviour is also possible. We shall show in this 
section that the topologically simple flow depicted in figure 2 (b) must be p-unstable. 
Formally, we prove the following theorem : 

THEOREM. Given a bounded, two-dimensional, simply connected domain V and an 
2-2 
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analyticjow w ( $ )  for which there exists a streamline 4 on which V$ = 0, then that $ow 
is p-unstable, that is 

3q5s.t . j  V [lVq512-$q52]dV< 0, q5 = 0 on S. (5.1) 

We prove the theorem by explicitly exhibiting a perturbation q5 for which (5.1) 
holds. Let 

where [ is a unit vector. We note that 

I( = v A (o,o, $) = q i ,  (5 .2 )  

and so 

We define q51 such that 

where V,  is the region insic 

dw 
V 2 U = - V A ( 0 , 0 , 0 )  =--U, 

d$ 

( q  inside V, 
" = I 0  outside V, and so 4, 

(5.3) 

(5.4) 

(5 .5 )  

: 4 as in figure 2 (b) .  Then $, is continuous everyw .,ere and 
differentiable except on 8. Furthermore, we note that may be 'smoothed out '  
near s$ in such a way that J(q51) is changed by an arbitrary small amount. Thus a 
fully differentiable (analytic) function q50 may be found such that if J(q5,) < 0 then 
J(q5,) < 0. It thus suffices to prove the former. In  addition, since q51 vanishes on S, 
(where dw/d$ will be singular unless Vw = 0 there), the convergence of the integral 
is assured. Now 

= J [u.V2u-qV2q]dV 
VO 

from (5.4) and the divergence theorem, the surface term vanishing because q = 0 on 
Sg and V is simply connected. We now show that the integrand of (5.6) is negative. 
For 

u .v2u=q$ (v2qt+2vq'vi+qv2[) 

= qv2q i- q 2 i  v q  (5.7) 

since i = 1, and hence Vq - V ( i .  i) = 0. Further, 

Combining (5.6), (5.7) and (5 .8)  we have 

(5.9) 

Now equality in (5.9) holds onlyjf either q = 0 throughout V, (i.e. the fluid is a t  rest 
everywhere as q is analytic) or if 4 is a constant vector, and the flow is uni-directional, 
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But this is not possible in a bounded domain. So J($J  < 0 and the theorem is 
proved. 

An obvious corollary of the theorem concerns flow inside a rigid stationary 
container. Should a flow of the form w = w ( $ )  exist, satisfying a no-slip condition on 
the boundary, then it will be p-unstable, by the theorem. However it should be noted 
that not all rigid boundary shapes will permit such a solution. In general, an unstable 
boundary-layer structure may develop. The circumstances in which a forced, viscous 
flow can be of the form (1 .2)  are discussed in Mestel (1989). 

We have observed that dw/d+ may become infinite on the streamline & where the 
velocity vanishes. If this occurs, then dw/d$ will not be single signed in the interior 
of V unless & coincides with the boundary surface S. We argued in $2 that if dw/d+ 
takes both signs within V then the Amol'd invariant A can be of either sign, and 
hence that J could be negative. The theorem confirms this. In addition, it shows that 
the flow is p-unstable even when dw/d$ is infinite on S but is otherwise single signed 
(the rigid boundary case), and also when Vw vanishes on so that dw/d+ is regular 
there. 

The author has not been able to demonstrate p-instability for the type of 
separation shown in figure 2 ( d ) .  Such a flow is characterized by the existence of a 
closed curve C,, drawn dashed in the figure, on which the tangential velocity 
vanishes. It seems likely that the flow of figure 2 ( d )  is also necessarily p-unstable, 
although, unlike that of figure 2 ( b ) ,  it is a t  least topologically stable, in that small 
disturbances do not alter the streamline structure, as pointed out privately by H. K. 
Moffatt . 

The proof of the theorem illustrates a consequence of the variational formulation 
(3 .1)  which is to be physically expected; namely, that if a portion of a flow is p- 
unstable then so is the entire flow. This idea is of importance because it extends the 
use of our analysis to a much wider class of flows for which (1 .2)  is valid only in a sub- 
region. Thus for example one can conceive of instances in which a complex boundary- 
layer structure might exist around a solid surface with the flow settling down in its 
interior to one of type (1 .2) .  Should the sub-flow inside any closed streamline be 
shown to be unstable, then we may infer that the entire flow is also. 

We must now address the question of the relation between p-instability and 
genuine instability. The only case where comparisons can be made with a normal 
mode analysis occurs when the streamlines are circular. In  the next section we 
investigate this case. 

6. Circular flow driven by a rotating magnetic field 
In this section we illustrate the results we have already obtained with respect to 

one of the few available analytical solutions for flows of type (1 .2) ,  which occurs when 
all the streamlines are circular. For such geometry the inertia forces are exactly 
balanced by radial pressure gradients and the Navier-Stokes equations effectively 
linearize. In terms of polar coordinates ( r ,  6, x )  we let S be T = a. In T < a a body force 
F = y(FT(r), F,(r), 0) acts, where y is the fluid viscosity. The velocity u = (0, u,, 0) then 
satisfies 
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where oo is the vorticity on S. Equation (1.3) reduces to 

do F, 
d$ - G‘ _-  

Let us now recall the known stability theory for inviscid circular flows (see for 
example Drazin & Reid 1981). The flow is stable to two-dimensional disturbances if 
Rayleigh’s inflection-point criterion fails, that is, if throughout V 

do - * 0. 
dr 

Further, a necessary and sufficient criterion for stability to axisymmetric 
disturbances is that Rayleigh’s discriminant should be everywhere positive 

u,w > 0. (6.5) 

Now we observed in $3 that if the flow is single signed (say u, 2 0) then Arnol’d’s first 
theorem (2.12) suffices to prove not only (6.4) but also (6.5). However, if there is a 
flow reversal as in the last section, it is possible for do/d$ to change sign while 
dwldr is single signed. Thus, as pointed out by a referee, in this case although the flow 
is p-unstable, it will be stable to two-dimensional disturbances. Clearly, however, 
flows with a flow reversal violate (6.5) and are thus unstable to axisymmetric 
disturbances. Indeed, physical intuition would suggest that flow reversals will always 
be unstable to three-dimensional disturbances even in the non-circular case, and this 
follows from the work of Bayly (1988), at least when the streamlines are convex. 
However, we have not investigated general disturbances in this paper, and can 
merely observe that there appears to be a loose connection between on the one hand, 
failure of a condition to guarantee two-dimensional stability, and on the other, onset 
of more general instability. We shall illustrate this further, together with a discussion 
of the relative values of the criteria we developed in the last few sections with a 
specific example. 

A case of importance in the metallurgical industry occurs when the force F, is 
generated by a rotating magnetic field. F, is then given by 

where 4, Il are Bessel functions while B,, po and S are the magnetic field, permeability 
and skin depth respectively (e.g. Moffatt 1965). For simplicity, we non-dimensionalize 
the velocity so that effectively 

2 
- = 1. 
POP 

For all S, F,(r) is a positive, monotonic increasing function. When 6 4 a, we have 

while for 6 4 a we have the exponential ‘skin-depth’ behaviour 
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We shall use the flow given by (6.2), (6.6) and (6.7) as an example and plot the 
stability regions as functions of oo and 6, as predicted by the (inviscid) theory. As we 
commented in $ 1  there is some danger in applying this theory to flows that are in 
reality viscous, especially in the presence of a solid boundary. If however the 
boundary is one of prescribed stress, then the quasi-inviscid approximation should 
hold at  least for timescales on which viscous diffusion is negligible. 

From (3.10), the p-stability boundary ( A  = 0) occurs when a solution exists to the 
problem 

d2+ id$  F8 
-+--+-$ = 0;  +(a) = 0. dr2 r dr u, 

(6.10) 

For fixed 6, we may think of this as an eigenvalue problem for wo, implicit in u8(r). 
Now if u8 has a zero in the interval (0,a) then the conditions of the reversed-flow 
theorem apply, and we know that the flow is p-unstable. Thus we are interested in 
values of wo and 6 for which (6.10) is regular away from r = 0. Equation (6.10) may 
be solved numerically for general 6, but we may find asymptotic solutions for 6 large 
and small. As 6/a+0, we have 

$ 1 -eNr-a)la , wo - --[--(;)'+0(!7], 1 6  6 
a a  ,I ' 

while as 6/a -+ 00, 

(6.11) 

--0.09124+0 

where F is the hypergeometric function. 
The stability regions in the (o,,a/S)-plane may now be found and are plotted in 

figure 3. For lwol sufficiently large (which in this simple geometry corresponds to a 
superposed solid rotation) it is clear from (6.2) and (6.3) that the flow will be stable. 
As wo increases from - co eventually reversed flow develops in the sense of Fe against 
the sense of wo, which by the theorem is p-unstable. This corresponds to the lowest 
curve in the figure. The next highest curve plots that value of @,(a) appropriate to 
a solid boundary #(ue(a)  = 0). This curve must lie in the p-unstable region. The 
middle curve is based on the Helmholtz estimate (4.6). It is a lower bound for the 
upper p-stability boundary. The second highest curve is the exact upper p-stability 
boundary as calculated numerically from (6.10). Finally, the uppermost curve is 
based on the WKB approximation (4.15) and overestimates this boundary. For this 
example, both the other Helmholtz estimate (4.5) and the square-well result (4.14) 
are worse than (4.15), but this need not be the case in general. These have been 
omitted from the figure for the sake of clarity. For non-circular shapes, the exact p- 
stability boundary would be much harder to find and so the WKB, square-well and 
Helmholtz estimates would be more useful. 

Let us now compare these results with the genuine stability regions as found from 
the extensive normal mode analysis of circular flow. For the particular forcing we 
have chosen, the flow is in fact always stable to two-dimensional disturbances, as 
(6.4) holds for all wo and 6. The stability of this flow to axisymmetric perturbations 
has been analysed by Richardson (1974), who calculated the normal modes for the 
full viscous problem. In our quasi-inviscid approximation it is sufficient to use the 
Rayleigh criterion (6.5), which predicts instability to axisymmetric disturbances for 
negative values of wo lying above the lowest curve in the diagram. I t  is of interest to 
note that the p-unstable region lies wholly within the region of three-dimensional 
instabilities, and that the lower p-stability boundary exactly coincides with one 
boundary of this region. 
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FIGURE 3. Stability regions in the (o,,, a/d)-plane for a rotating magnetic field about a 
circular cylinder. 

Thus, in summary, we can identify four different regions of the (q,, a/&)-plane for 
this example. First, there is the region where dw/d$ < 0 throughout V ,  for which 
stability to both two-dimensional (2D) and axisymmetric (AS) disturbances holds, 
and is proved by Arnol’d’s first theorem. Secondly, there is the p-unstable region in 
which the flow is in fact stable to 2D but unstable to AS disturbances. Thirdly, we 
have the region where do/d@ > 0 and the functional J is positive. In  this region, 2D 
stability is proved, but the flow may or may not be stable to AS disturbances. As we 
expected, the theory we have developed underestimates the region of 2D stability, 
but surprisingly, it appears to be connected with more general instability. It is not 
possible to infer very much about the general case from the study of circular flows. 
We might however conjecture that p-instability will always occur totally within the 
regions of parameter space that are unstable to some sort of three-dimensional 
disturbance. This conjecture is at least plausible if one regards p-instability as 
highlighting structural weakness in the basic flow. However, as pointed out by a 
referee, the circular flow u ( r )  = re-r2 is stable to  both 2D and AS disturbances in the 
domain r < 1, yet i t  is p-unstable as shown by the trial function # = 1 - r2 .  This 
conjecture thus appears to be false. 

Apart from the final remarks in 88, this concludes the portion of this paper that 
deals with two-dimensional flows. In  the next section we consider to what extent the 
results we have obtained have counterparts in poloidal, axisymmetric flow. 

7. Poloidal axisymmetric flows 
The results we have derived so far hold only for two-dimensional flows. It is 

natural to enquire to what extent analogous results exist for poloidal, axisymmetric 
flow patterns. In  this section we assess the effects of the additional factors of the 
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cylindrical radius which crop up in axisymmetry. The general drift of the analysis is 
similar to that of 392-6, and we shall therefore leave out some of the details. 

We use cylindrical coordinates ( r ,  0, z )  where a/a0 = 0, and the volume element 
dV = 2nrdrdz. The Stokes stream function $(r , z )  is related to  the poloidal velocity 

II 

U = V A  o,--,o - - v $ ~ e ,  ( : )-: 
where d is a unit vector in the &direction. The vorticity is azimuthal and given 

1 
o = (0, W ,  0) = --D2$S^ r (7.2) 

where, for any ~ ( r ,  z ) ,  the Stokes operator, D2, satisfies 

Restricting attention to poloidal axisymmetric perturbations, we can write the 
unsteady stream function Y ( r ,  z ,  t )  in the form 

Vr, 2, t )  = $(r ,  z )  + E $ ( T ,  2, t ) .  (7.4) 

Here q4 and Y must vanish on the symmetry axis r = 0 as well as on S. The unsteady 
inviscid vorticity equation reduces to a material conservation law for the ‘potential 
vorticity ’, - D<Y/~? 

Thus, the inertial constraint for steady flows corresponding to (1.2) is 

---D2+ 1 = W - = sZ($). 
r2 r 

The extension of Arnol’d’s theory to axisymmetric flows is fairly straightforward. 
Nevertheless, as it is not well known we shall describe i t  here. Equation (7.5) ensures 
the conservation of any function of the potential vorticity integrated over the 
axisymmetric region V.  Kinetic energy is likewise conserved. Thus, bquivalent to 
(2.5), we find that for any function L 

is conserved by the flow. To lowest order in E ,  we have 

Using (7.3) and the divergence theorem, we see that the first-order perturbation 
vanishes if the function L is such that 

L’(s1) = $(a). (7.9) 

Then 4 W  = A2($)+$52B2(4)+0(e2), (7.10) 

where (7.11) 
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Once again, we may infer stability of the flow provided the functional B, is of 
definite sign. Clearly, such is the case if d$/dQ < 0 throughout V.  Also, as before, 
if d$/dQ can take either sign in V ,  then so can the function B,. When however 
d$/dQ >, 0 throughout V then B, may be negative definite. The critical case occurs 
when there is an eigensolution, q5, to the problem 

-- d$ ’ D2q5+q5 = 0 
dQ r2 

in q5=0 on S.  

Such a 5, would, as before, be a steady solution to the normal mode equation 

(7.12) 

(7.13) 

obtained from (7.5). Similar arguments to those of $ 3  lead us to the alternative 
functional J, defined by 

J,(#) = J v [ y - g $ 2 ] d V .  (7.14) 

The condition for J, to be positive definite is precisely that for B, to be of definite sign, 
provided dQ/d$ is single signed. The associated Schrodinger eigenvalue equation for 

(7.15) 
dQ 

(7.14) is 
D2q5+r2---# = A$. 

d$ 
An ‘energy-like’ functional I ,  may be found here also, namely 

I , (W = [ v [ F - P ( Y ) ] d V  where P($) =a($). (7.16) 

Stability follows if the basic flow (Q, $) is a local minimum of I,. 
Stability estimates based on bounding r2 dQ/d$, and involving the lowest 

eigenvalue of the axisymmetric Helmholtz equation in V may be found in a manner 
identical to that of $4. A one-dimensional Schrodinger equation may be found here 
also by restricting q5 = $($). In fact we obtain the identical equation (4.10) by this 
approach (with 52 replacing 0) .  Thus the WKB and ‘square-well’ results carry 
straight over. The reversed-flow theorem of $5, however, does not carry over 
unmodified. We can show that the flow must be either p-unstable or neutrally stable. 
For if we let q5 = a$/az inside the region V, on whose surface u vanishes, then we can 
show that 

J 2 ( Z )  = 0. (7.17) 

Now were this value of q5 not to satisfy (7.15) with A = 0, we could deduce that a 
function q5 existed for which J2(q5) < 0 and thus that the flow was p-unstable. 
However, since 

(7.18) V ~ U  = -V A ( w l )  = -2522^-r2-uu, 
dS2 
dw 

(7.19) 

we see that a$/az is indeed an eigenfunction of (7.15), and no such deduction is 
possible. The author has not been able to prove p-instability in the general case, 
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although it  seems likely. Of course, if, as before, d52/d$ is infinite on a streamline in 
the interior of V ,  then it will take both signs there, and we know from the form of 
B, that the flow will then be p-unstable. 

Analytic solutions for non-constant 52 in axisymmetry are rare, there being 
nothing analogous to the circular-streamline case of $6. Thus, we do not present an 
analytic illustration here. However, solutions could be found, and their stability 
determined, for the special case when the forcing is such that d52/d+ is constant in 
regular shape S (such as in Jones, Moore & Weiss 1976). 

8. Concluding remarks 
I n  this paper we have limited our attention to a well-defined class of flows with 

which we can make considerable progress. The stability criterion we have derived 
and used extensively gives a convenient, global condition for deciding whether a flow 
of this type is linearly stable. However, the method has its limitations, and it is well 
to bear these in mind. 

First and most importantly, we have no guarantee that a flow deemed p-unstable 
by the global theory is in fact unstable to three-dimensional let alone two- 
dimensional disturbances. This is a common difficulty with global approaches. We 
have seen from the circular case that a p-unstable flow may be two-dimensionally 
stable, although it often appeared to be unstable to a particular kind of three- 
dimensional disturbance. We conjectured that such is usually the case for general 
streamline shapes, but the uncertainty is then even greater, there being no 
convenient normal mode theory with which to compare. 

Secondly, even if a p-unstable flow is in fact unstable, we have not discovered the 
precise nature of the instability. Although the form of $ that minimizes J gives some 
indication as to  the instability mechanism, this # need not be a normal mode of the 
system. Physically, however, one might expect # to be a reasonable approximation 
to an unstable mode, if the flow is indeed unstable to two-dimensional disturbances. 
What 4 does indicate is the structural weakness in the given flow from which 
perturbations can extract energy. 

The dependence of the stability problem on the vorticity gradient do/d$ is 
manifest. This is not too surprising given the known behaviour of one-dimensional 
and circular flows. As we argued in $3, Arnol’d’s first theorem may be considered as 
a generalization of Rayleigh’s inflection-point criterion to  arbitrarily shaped flows. 
The expression (1.3) for forced and dissipative flow affords further enlightenment. 
We know that the flow is stable when dw/d+ < 0 everywhere. This corresponds to 
flow against the sense of the driving force. Physically therefore, the flow must be 
driven by some external surface stress r. Such a configuration seems to be stable, 
possibly even to  three-dimensional disturbances. When conversely, as is usually the 
case when rotational forces act, the flow is mainly in the same direction as the 
forcing, then dw/dll. > 0. When the circulation around a given streamline is 
relatively small, dw/d+ is large and the flow is likely to be p-unstable. Instability 
seems physically plausible in this case, as a local perturbation may be able to  extract 
energy from the forcing without commensurately increasing the dissipation rate. We 
conclude that flows are likely to be stable if driven in the main from their outer 
boundary, and that, when they are driven internally by a rotational force, instability 
may occur whenever geometrical constraints or boundary conditions cause a 
disproportionately low response to the forcing. 

The above comments should be borne in mind when applying the results of this 
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paper to an appropriate flow. It is worth re-emphasizing, however, that the class of 
flow to which they apply is wider than might appear at first sight, as the region of 
inertial domination described by (1.2) need not occupy the entire domain. Any flow, 
perhaps even one turbulent in places, may contain a portion bounded by a streamline 
inside which the conditions of this paper apply, and the stability of which may be 
determined by the methods we have described. 

Although the emphasis of this paper has been on the two-dimensional theory, i t  is 
possible that $7 on axisymmetric flows is of the greatest practical importance. Such 
flows tend to have greater resistance to azimuthally dependent perturbations than 
do planar flows to disturbances in the third dimension. One possible application of 
the axisymmetric theory is to the levitation melting problem (e.g. Mestel 1982). 

Finally, I would like to express my gratitude to Dr Shepherd, Dr Proctor and 
Professor Moffatt for some useful conversations and comments. 
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